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Abstract
Purpose The accumulation of trace elements in sediments from
highly productive continental margins may depend on the affin-
ity of these elements for organic matter and their degrees of
further incorporation into pyrite (FeS2). We tested the hypothesis
that the relative contributions of these geochemical phases play a
substantial role as trace element (As, Cd, Cr, Cu,Mn,Ni, and Zn)
sinks in the highly bioturbated sediments from the tropical up-
welling system off Cabo Frio, southeastern Brazil.
Materials and methods Four sediment cores sampled across the
Cabo Frio continental shelf were submitted to a sequential ex-
traction procedure performed to separate three different opera-
tionally defined fractions, i.e., the geochemical phases soluble in
1 M HCl (considered as the Breactive^ fraction), concentrated
H2SO4 (considered as the organic matter-bound phase), and con-
centrated HNO3 (considered as the pyrite-bound phase). The
trace metal incorporation into pyrite was assessed by estimating
the degree of trace metal pyritization (DTMP), while the pyrite

sulfur stable isotope signatures (δ34SPyr) were used as proxies for
sulfur redox cycling intensity.
Results and discussion Relative contributions of trace element
fixation by organic matter and pyrite were positively correlated
for Mn, Cr, and Ni on one hand, and negative correlated for Cu,
on the other hand. The positive correlations imply in synergistic
roles of these geochemical phases in determining the trace ele-
ments sedimentary sinks, while the negative relationship found
for Cu reflects differences in the predominant retention mecha-
nisms along with sediment burial. The δ34SPyr signatures were
negatively correlated with DTMP values of As, Cd, and Mn,
suggesting a diminishing effect of the sulfur redox cycling on
trace elements pyritization. These δ34SPyr signatures were not
correlated with DTMP values of Cr, Cu, and Ni, which were
dominantly associated with the high organic matter contents
found in this upwelling system.
Conclusions The role of pelagic organic matter scavenging of
metals and later fueling of benthic microbial sulfate reduction
and pyrite accumulation were evidenced as highly variable
across the Cabo Frio shelf sediments. Differences in the organic
matter accumulation in response to upwelling-enhanced primary
productivity and in the intensity of bioturbation-driven sulfur
redox cycling help to explain the spatial variability in the biogeo-
chemical processes affecting the sedimentary trace metal sinks.
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1 Introduction

The trace element (TE) accumulation in sediments from highly
productive continental margins may be influenced by incorpora-
tion of these elements into organic matter derived from pelagic
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primary producers (Acharya et al. 2015; Böning et al. 2015;
Cheriyan et al. 2015). Some of these elements are biologically
essential (e.g., Cu, Ni, Zn), which explains their affinity for or-
ganic matter and associated efficient scavenging to bottom sed-
iments (Chaillou et al. 2002; Saito et al. 2002; Brumsack 2006;
Muñoz et al. 2012). Concurrently to this well-known process of
TE accumulation in continental margin sediments, the buried
organic matter can fuel microbial sulfate reduction and the pro-
duction of pyrite (FeS2), which may constitute an additional TE
sink, as recorded for a wide range of sedimentary environments
(Raiswell and Plant 1980; Huerta-Diaz andMorse 1992; Dellwig
et al. 2002; Neumann et al. 2013).

The mechanistic understanding of the processes controlling
the incorporation of TE into pyrite is essentially based on an
extension of the concept describing the conversion of reactive
iron into pyrite (degree of pyritization, DOP; Berner 1970;
Rickard and Luther 2007), the incorporation of TE into pyrite
(degree of trace metal pyritization, DTMP; Huerta-Diaz
and Morse 1990, 1992). The DTMP variability between ele-
ments is dependent on thermodynamic relationships (e.g., deter-
mining metal incorporation into pyrite or formation of metal
monosulfides), but also reflect differences in ligand exchange
reaction kinetics and redox reaction pathways (Morse and
Luther 1999). The DTMP concept has successfully been applied
in several modern sedimentary environments, ranging from shal-
low intertidal (e.g., Huerta-Diaz and Morse 1992) to deep conti-
nental slope sediments (e.g., Otero et al. 2003), andwas extended
to ancient euxinic environments (e.g., Berner et al. 2013).
However, the TE geochemical partitioning in response to sedi-
mentary boundary conditions is still not fully understood. There
are comparatively few data on DTMP variability under the im-
pact of sulfide oxidation (Morse et al. 1993; Cooper and Morse
1998; Machado et al. 2014; Noël et al. 2014), while there are
experimental evidences of pyrite consumption under oxidizing
conditions (Morse 1994a, b; Bataillard et al. 2014).

Coastal and marine sediments can present intense sulfur
redox cycling, as indicated by stable sulfur isotope (δ34S) frac-
tionation in sediment pore water sulfate and solid-phase sulfides
in relation to seawater sulfate (Böttcher et al. 2000; Habicht and
Canfield 2001; Wijsman et al. 2001). Figure 1 synthesizes the
major processes involved in this cycling, which include a major
role of dissimilatory sulfate reduction and disproportionation of
sulfur intermediates in determining the δ34S signals (Jørgensen
1990; Canfield et al. 1993; Canfield and Thamdrup 1994;
Cypionka et al. 1998; Habicht et al. 1998; Pellerin et al. 2015).
This sulfur cycling may include pyrite oxidation processes pro-
moted by physical disturbances and bioturbation (Morse 1994a,
b; Morse and Luther 1999; Otero et al. 2006; Aller et al. 2010;
Diaz et al. 2012; Ding et al. 2014; Noël et al. 2014), whereas
pyrite oxidation records can be also observed in ancient sedimen-
tary environments (Soliman and El Goresy 2012). Besides the
aerobic oxidative consumption of pyrite, anaerobic oxidation
processes may be possibly also important, e.g., due to pyrite

reactions with metal oxides (Schippers and Jørgensen 2001;
Wu et al. 2016). Considering that pyrite-bound metals can be
mobilized due to pyrite oxidation (Morse 1994a, b; Machado
et al. 2011; Noël et al. 2015), the importance of pyrite as a TE
sink may possibly change in response to this mobilization and
newTE relative associations with different geochemical fractions
(Fig. 1). However, the hypothesis that both organic matter and
pyrite play major roles as TE carriers in bioturbated continental
margin sediments from highly productive areas was not tested
previously.

This study evaluates potential mechanisms involved in the TE
accumulation in sediments from the upwelling system off Cabo
Frio, southeastern Brazil, assessing the relative contributions of
organic matter and pyrite as sinks for these elements. A previous
work on this tropical system combined geochemical and sulfur
isotopes data with micro-textural observation of pyrite surface to
evaluate the impact of the sulfur redox cycling on the develop-
ment of sulfur isotope signals in sediments sampled across the
continental shelf (Diaz et al. 2012). This previous work evi-
denced an elevated isotopic fractionation between seawater sul-
fate and chromium-reducible sulfur (CRS, essentially pyrite),
with the observedΔ34S values (up to 60‰) revealing an intense
sulfur cycling influenced by intense bioturbation. This sulfur
redox cycling inference based on stable isotopes signatures is
supported by the known significant discrimination of the stable
sulfur isotopes due to successive dissimilatory sulfate reduction
events, leading to an increasing enrichment of 32S in the H2S
produced and in the derived pyrite (e.g., Chambers and
Trudinger 1979; Wijsman et al. 2001; Diaz et al. 2012).

In the present study, previously reported Fe speciation and
sulfur isotope results (Diaz et al. 2012) are combinedwith new
data on DTMP values and new geochemical partitioning data
for a number of TE (As, Cd, Cr, Cu, Mn, Ni, and Zn). This
combination allowed us to test the hypotheses that (1) the
organic matter and pyrite play synergistic roles as TE sinks
and (2) the sulfur redox dynamics can limit the TE incorpora-
tion into pyrite along the Cabo Frio upwelling area.

2 Study area and methods

In April and May 2010, four box-cores were recovered from
the continental shelf area off Cabo Frio (Fig. 2). Sub-cores were
retrieved from these box-cores by using PVC tubes (Ø = 10 cm,
40-cm length). These sediment profiles were sliced in 1-cm-
depth intervals and stored at 4 °C in acid-cleaned plastic con-
tainers until further laboratory processing. The oceanography of
the study area is dominated by the warm (> 20 °C) tropical water
(TW) flowing along the shelf border carried by the Brazil Current
(BC), and the underlying relative cold (< 18 °C) South Atlantic
Central Water (SACW). During intense NE winds driving up-
welling events, the intrusion of SACW into the euphotic zone
increases local primary productivity by enhancing nutrient input
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to the euphotic zone (Albuquerque et al. 2014). In this highly
productive system, the abundance of sedimentary pyrite in the
studied surface sediments indicates that microbial sulfate reduction
takes place. However, the observed bioturbation structures, essen-
tially constant pore water sulfate concentrations and the absence of
sulfide at all studied sites (Diaz et al. 2012) indicate the work of an
efficient oxidative part of the sulfur cycle. Table 1 presents the
main sedimentary characteristics of the sampling stations.

As described in detail by Huerta-Diaz and Morse (1990), a
sequential trace element extraction procedure was performed, in

order to separate different operationally defined fractions soluble
in 1MHCl (MeHCl); concentrated H2SO4 (considered as organic
matter-bound phases, MeOM); and HNO3 (considered as metals
bound to pyrite, Mepyr). MeOM extraction was performed after
removal of silicate phases with an extraction in 10 M HF. The
determination of iron and TE concentrations was performed si-
multaneously, using a Jobin Yvon Ultima 2 sequential ICP-OES
system. Analytical grade reagents obtained from Merck and
Milli-Q water were used and analytical blank analyses were rou-
tinely performed. All used plastic and glassware were cleaned

Fig. 2 Location of sampling
stations in Cabo Frio upwelling
area, southeastern Brazil

Fig. 1 Representation of the sulfur cycling, major processes involved
and the trace metal cycling between the geochemical fractions that
constitute the considered sedimentary metal sinks (i.e., organic matter-
bound (MeOM) and pyrite-bound (Mepyr) metal fractions), and a

Breactive^ metal fraction, as conventionally obtained by diluted HCl ex-
traction (MeHCl). MeOM, Mepyr, and MeHCl are defined according to
Huerta-Diaz and Morse (1990)
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with nitric acid (10%) for 24 h and further rinsed inMilli-Qwater
before use. DTMP values were calculated as defined by Huerta-
Diaz and Morse (1990), according to Eq. 1:

DTMP ¼ Mepyr
.

MeHCl þMepyr
� �� �

� 100 ð1Þ

The DOP values were calculated using an equation analogous
to that showed above for DTMP. There is no certified reference
material for the chosen sequential extraction procedures that
allow accuracy assessment. For an analytical reproducibility
assessment, duplicate analysis of the certified reference material
NRC PACS-2, Canada, was performed. The obtained analytical
precision estimates were within ± 6% for all extraction proce-
dures (Table S1, Electronic Supplementary Material). Note that
the total concentrations of many elements (Fe,Mn, Cr, Cu) in the
certified reference material were not well recovered by the sums
of the three extraction procedures (Table S1, Electronic
SupplementaryMaterial). Thismay be expected since tracemetal
associations to heavy minerals that are not decomposed by the
adopted sequential extraction scheme (determining MeHCl,
MeOM, and MePyr) may occur. Table S1 (Electronic
SupplementaryMaterial) also gives the analytical detection limits
from different extraction procedures, while Table S2 (Electronic
Supplementary Material) presents a synthesis of all results from
each extraction step analyzed.

Data of chromium-reducible sulfur (CRS, essentially pyrite)
and iron species (described above) were taken from Diaz et al.
(2012), together with the sulfur isotope data of the CRS fraction
(δ34SCRS). The CRS extraction (CRS = FeS2 + minor S0) was
performed using the two-step sequential distillation method from
Fossing and Jørgensen (1989). The H2S released from this
extraction was collected in Zn-acetate trap, and the concentration
of ZnS formed was measured by the colorimetric method
described by Cline (1969). Contents of TOC (after carbonate
removal by acidification) and total sulfur (TS) were determined
by using a Eurovector elemental analyzer. For δ34SCRS analyses,
the collected ZnS was converted to Ag2S, washed, and dried.
The isotope compositions of Ag2S were measured by using
combustion isotope ratio-monitoring gas mass spectrometry
(Thermo Finnigan™ MAT 253). The δ34SCRS data are reported
versus the international V-CDTstandard in the conventional delta
notation, which is equivalent to mU (Brand and Coplen 2012). A
Pearson correlation analysis was performed, using a significance
level of 0.05 as boundary criterion.

3 Results and discussion

Vertical profiles of contents and relative proportions of different
geochemical fractions are presented in Figs. 3 and 4,

Table 1 Main characteristics of studied sediments

Sampling
station

Core code Location Water
depth
(m)

Mud (%)
(mean ± standard
deviation)a

TOC (%)
(median and
range)b

TS (median
and range)b

(%)

CRS (%)
(median and
range)b

δ 34SCRS (‰)
(median and
range)b

SR
(mm year−1)a

Station 1 BCCF10-01 23° 40′
38″ S,

41° 59′
01″
W

128 58.7 ± 10.3 1.2
(1.0 to 2.0)

0.14
(0.004 to

0.29)

0.05
(0.006 to 0.24)

– 40
(− 42 to − 26)

1.0

Station 4 BCCF10-04 23° 27′
64″ S,

41° 64′
48″
W

120 89.5 ± 8.30 2.0
(1.5 to 2.3)

0.2
(0.05 to 0.31)

0.07
(0.007 to 0.16)

– 38
(− 41 to − 31)

1.4

Station 9 BCCF10-09 23° 20′
13″ S,

41° 73′
63″
W

117 92.3 ± 6.0 2.0
(1.6 to 2.6)

0.3
(0.03 to 0.32)

0.05
(0.01 to 0.14)

– 33
(− 39 to − 26)

1.8

Station 15 BCCF10-15 23° 05′
86″ S,

41° 87′
61″
W

79 61.1 ± 12.2 1.6
(1.1 to 2.2)

0.2
(0.14 to 0.31)

0.05
(0.02 to 0.08)

– 32
(− 36 to − 28)

5.5

TOC total organic carbon, TS total sulfur, CRS chromium reducible sulfur, δ34 SCRS stable isotope ratio of CRS
aData from Figueiredo et al. (2013). SR, sedimentation rate based on 210 Pb and 239+240 Pu dating
bData from Diaz et al. (2012)
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respectively, while metal concentration ranges per station are
available in the Table S2 (Electronic Supplementary Material).
Concentration profiles generally did not display clear vertical
trends for HCl-soluble and organic matter-bound fractions, with
the exception of the HCl-soluble Mn that decreased slightly with
depth in stations 4 and 9, while many elements presented pyrite-
bound concentration increases with depth (Fe, Mn, As, and Cd),
which was not found for Cr, Cu, Ni, and Zn (Fig. 3). This

observation suggests a clear trend of some trace elements to
follow the Fe behavior of enrichment in the pyrite fraction, con-
currently with a consumption of HCl-soluble Mn compounds
within sediments frommiddle shelf (stations 4 and 9), alongwith
diagenesis (e.g., Otero et al. 2003; Huerta-Diaz et al. 2011). This
Mn consumption trend was associated with the smaller grain size
and higher organic matter content found in stations 4 and 9
(Table 1), which can favor more intense diagenesis that can also

Fig. 3 Distribution of HCl-soluble and pyritic concentrations (μmol g−1

for Fe andMn; nmol g−1 for other elements), degree of pyritization (DOP,
%) and degree of trace metal pyritization (DTMP, %) in the studied

sediment cores. Iron data (FeHCl, Fepyr, and DOP) are reproduced from
Diaz et al. (2012), with permission
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explain the higher concentration of pyrite-bound Fe and Cd
found in these stations (Fig. 3).

Iron pyritization increased with depth, which was followed
by As and Cd DTMP values (Fig. 3). High DTMP values were
observed for As (> 50%; Fig. 3), which is caused by the incor-
poration of As into pyrite (Huerta-Diaz and Morse 1992;
Neumann et al. 2013). On the other hand, Mn, Cd, and Zn
underwent only minor pyritization (< 30%), in agreement with
previous observations (Morse and Luther 1999; Huerta-Diaz
et al. 2011). The pyritization of Cu was highly variable (7–
79%) close to the range reported in previous observation
(Huerta-Diaz and Morse 1992; Huerta-Diaz et al. 2011). The
top sediment layers at station 1 showed elevated DTMP values
for Cr (up to 89%), contrasting with deeper layers (below 50%)
and the other stations (< 18%) (Fig. 3). Exceptionally high
DTMP (up to nearly 80%) has been reported for Cr elsewhere
(Huerta-Diaz and Morse 1992; Morse et al. 1993), even though
the chromate anion is kinetically inert to react with sulfide and
is not predicted to be incorporated to substantial amounts into
pyrite crystal lattice (Morse and Luther 1999).

Some TEs (Mn, Cd, and Zn) and Fe were predominantly
found in the HCl-soluble fraction, while As was essentially bond
to pyrite in all sampling positions across the shelf (Fig. 4).
Though Cr, Cu, andNi showed an abundance in highly variable

geochemical fractions, they also show a relatively higher asso-
ciation with organic matter (~ 50–75% for Cr, ~ 25–40% for
Cu, and ~ 20–50% for Ni) compared to the other elements
(< 30%) (Fig. 4). These three essential metals are frequently
associated to organic matter (e.g., Böning et al. 2004, 2015;
Muñoz et al. 2012; Cheriyan et al. 2015; Noël et al. 2015).
The Ni organic matter fraction was more important in the mid-
dle shelf positions (stations 4 and 9; Fig. 4), in association with
the higher organic matter content found in these locations
(Table 1). In opposition, lower organic matter fractions of Cr
and Zn were observed in middle shelf stations, in which the
HCl-fractions of these metals were predominant, following the
Mn partitioning trend (Fig. 4). This can be explained by well-
known associations of trace metals with Mn oxy-hydroxides
(Shaw et al. 1990; Olson et al. 2017). Less variable contents
in the organic matter fraction were observed for Cu, showing
an enhanced variability of associations in the HCl-soluble and
pyrite fractions (Fig. 4).

The behavioral contrasts between Cu and other elements may
be partly due to some particularities of Cu chemistry, since this
metal may occur either as Cu(I) and Cu(II) forms, resulting in a
large variability of possible geochemical associations (e.g.,
multiple Cu sulfides may occur; Morse and Luther 1999). This
allows the speculation that a variable affinity to be incorporated

Fig. 4 Relative proportions (%) between the selected geochemical fractions of studied elements
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by pyrite may be difficult generalizations on the Cu behavior
under the dynamic physicochemical conditions found in the
study area (as fueled by bioturbation-driven and
hydrodynamics-driven process; Diaz et al. 2012), depending sed-
imentary heterogeneities (as exemplified by data from Table 1).

Concurrent TE associations to organic matter and pyrite
were generally observed. This resulted in significant positive
correlations (Fig. 5) between the proportions of organic matter
bond and pyrite Mn (for all stations; r = 0.59 to 0.83), Cr (for
stations 1 and 15; r = 0.85 and 0.96, respectively), and Ni (for
stations 4 and 9; r = 0.43 and 0.55, respectively). In opposition,
significant negative correlations occurred between the propor-
tions of organic matter-bond and pyrite Cu in all stations
(r = − 0.72 to − 0.97). The observed positive correlations can
be explained by the fact that higher organic matter contents can
stimulate the accumulation of pyrite and the pyritization of TE
by sustaining a more intense microbial activity (e.g., Huerta-
Diaz andMorse 1992; Müller 2002), while the accumulation of
metals scavenged from the water column by particulate organic
matter (e.g., Chaillou et al. 2002; Brumsack 2006) is concur-
rently favored. On the other hand, the negative relationship
found for Cu was interpreted as derived from changes in the
predominant mechanisms determining the Cu retention by sed-
iments. The inverse variability in the importance of these two
geochemical carriers was not necessarily dependent on depth
for most stations, though station 15 presented a gradual increase
in the relative importance of pyrite with depth, while the organ-
ic matter relative importance decreased (Fig. 4).

Many positive correlations between DTMP and DOP were
observed (Fig. 6), which is statistically significant for Mn
(r = 0.75 to 0.93); Cd (r = 0.61 to 0.96); As (r = 0.68 to
0.75, with the exception of data from station 4 that presented
r = 0.14); and Cu (r = 0.59 to 0.80, with the exception of
station 1 data that presented r = 0.38). Statistically significant
correlations were generally not observed for Cr, Ni, and Zn,
with a few exceptions in station 9 (r = 0.66 and 0.59 for Cr and
Ni, respectively) and station 4 (r = 0.47 for Zn). Therefore, the
expected trend of DTMP increases with increasing DOP,
reflecting gradual incorporation into pyrite (Huerta-Diaz and
Morse 1992), was frequently not observed. Previous efforts to
elucidate the DTMP variability have often found absence of

correlation with DOP for DTMP values, as reported for Mn,
Cu, and Zn (r < 0.15) in anoxic fjord sediments (Müller 2002).
However, changes in DOP and DTMP can result from alter-
ations in the concentrations of TE in the pyrite and/or reactive
phases, modifying DOP-DTMP relationships, e.g., in re-
sponse to mechanisms of TE dissolution into sediment pore
water and reincorporation by sediment solid phase (Ye et al.
2010, 2011). In this context, it is hypothesized that the de-
scribed behavioral differences of TE in Cabo Frio shelf sedi-
ments may be influenced by the intense sulfur redox cycling
previously identified in the same sampling sites, which possi-
bly is a factor limiting the TE incorporation into pyrite in
addition to those usually assessed in the literature.

The relationships of DOP and DTMP with δ34SCRS were
evaluated to test the hypothesis that the intensity of sulfur cycling
is associated with characteristic DTMP values (Fig. 7). The
DTMP values for As (stations 1, 9, and 15); Mn (stations 1, 4,
and 9); and Cd (all stations) are significantly correlated with the
isotope composition of pyrite sulfur (r = − 0.95 to − 0.63). The
same for Zn and Ni DTMP values was only observed at station 9
(r = − 0.72 and − 0.66, respectively) and for Cu at station 4
(r = − 0.74). Moreover, the δ34SCRS threshold value for intense
sulfur cycling assigned by Diaz et al. (2012) for the studied
sediment cores is indicated in Fig. 7. This value was assigned
considering that the CRS depletion in 34S was largest and
becomes less variable when CRS contents exceed ~ 0.1 wt%,
with this threshold for intense sulfur cycling corresponding to a
δ34SCRS average of − 40 ± 1‰ (Diaz et al. 2012). Below this
threshold, increased DTMP values were observed for As, Cd,
and Mn at station 1 (Fig. 7), as previously reported for DOP
(Diaz et al. 2012). These results evidenced a diminishing effect
on DTMP by the sulfur cycling, as revealed by δ34SCRS variabil-
ity, which can affect the pyrite production and preservation
against oxidation.

The proposed influence from the sulfur redox cycling on the
TE incorporation and preservation into pyrite in Cabo Frio shelf
sediments seems to be plausible to occur in a wide range of
environments, considering that metal sulfide (including pyrite)
oxidation is expected to occur due to ubiquitous processes, such
as overlaying water oxygenation changes (Cooper and Morse
1996, 1998), bioturbation (Aller et al. 2010; Diaz et al. 2012),

Fig. 5 Relationships between the proportions of organic matter-bond and pyrite-bound for Mn, Cr, Cu, and Ni
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sediment re-suspension (Morse 1994a, b), and anaerobic oxi-
dation (Aller and Rude 1988; Böttcher and Thamdrup 2001;
Schippers and Jørgensen 2001), with possible contributions
from sulfide-oxidizing bacteria (Böning et al. 2004; Sim et al.
2011). Elevated sulfur isotope fractionation between pore
water sulfate and pyrite is frequently observed in systems under
the impact of the oxidative part of the sulfur cycle, reaching
strongly 34S-depleted isotope signatures in modern environ-
ments (Habicht and Canfield 2001; Böning et al. 2004; Zopfi
et al. 2008) and ancient sediments (Fisher 1986; Canfield and
Teske 1996; Berner et al. 2013).

Relationships of sedimentary sulfur isotope signatures with
metal contents have previously been described, e.g., with both
total Mo and U contents (Dellwig et al. 2002) and with the Re/
Mo ratios (Böning et al. 2004). Both positive and negative
correlations of the Re/Mo ratio with pyrite δ34S were found,

depending on the position of the sediment in relation to the
oxygen minimum zone off Peru (Böning et al. 2004). These
observations indicate that the capacity of sediments to capture
redox-sensitive TE may be enhanced by intense sulfur cycling
and be reflected in sulfur isotope signature. A diminishing
effect of sediment oxidation on DTMP was supposed by
Morse et al. (1993) and Morse (1994a, b). In the case of
sediment re-suspension events in a shallow coastal system,
however, a positive effect on DOP and DTMP was proposed
(Neumann et al. 2005; Scholz and Neumann 2007). In this
later case, the authors concluded that intense oxidation may
result in the formation of sulfur species with intermediate re-
dox states, which may accentuate FeS conversion into pyrite
according to the so-called polysulfide pathway (Rickard and
Luther 2007). This suggests that the sulfur cycling may lead to
both positive and negative effects on the degrees of DTMP.

Fig. 7 Degree of tracemetal pyritization (DTMP) plotted against δ34SCRS. The shaded area corresponds to intervals below the threshold value for intense
pyrite sulfur cycling, based on δ34SCRS signatures, as previously assigned by Diaz et al. (2012)

Fig. 6 Relationships between DTMP and DOP values
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4 Conclusions

The relative importance of pyrite and organic matter as TE
carrier were investigated in fine-grained and organic matter-
rich sediments from the tropical Cabo Frio upwelling system,
off Brazil. TE associations with pyrite were found in all cores,
even under the conditions of intense bioturbation found in the
study area. The relative contributions from organic matter and
pyrite to determine the TE accumulation in these cores
showed significant positive and negative correlations. While
the positive relationships implied in the occurrence of a cu-
mulative positive effect from pyrite and organic matter for
Mn, Cr, and Ni, the negative correlation observed for Cu
was associated to changes in the predominant mechanism of
Cu retention. Significant covariations of DTMP with δ34SCRS
indicate that the sulfur cycling may often lead to a diminished
DTMP for As, Cd, and Mn, by limiting pyrite formation and
preservation against oxidation. However, the elements that are
associated with organic matter (Cr, Cu, and Ni) showed
DTMP values decoupled from the change in δ34SCRS. We
conclude that DTMP values may result from more complex
processes than usually considered, due to different sensitivi-
ties of specific elements to sulfur cycling. Besides the evident
importance of pelagic organic matter scavenging of TE, the
results give further evidence for the role of different organic
matter sedimentations across the continental shelf that influ-
ence the development of DTMP values, fueling benthic sulfate
reduction and pyrite formation.
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